Einführung: Gottes Souveränität und abstrakte Objekte
Die Natur Gottes und seine Souveränität sind eine der tiefgreifendsten Fragen der Theologie und Philosophie. Eine interessante Debatte in diesem Zusammenhang dreht sich darum, wie Gottes absolute Souveränität mit abstrakten Objekten wie Zahlen, Eigenschaften und mathematischen Konzepten interagiert. Kann Gott souverän bleiben, wenn es ungeschaffene, ewige abstrakte Objekte gibt? Diese Frage hat Theologen und Philosophen gleichermaßen herausgefordert. In diesem Artikel untersuchen wir, wie diese abstrakten Objekte die Autonomie Gottes bedrohen können und wie verschiedene philosophische Antworten darauf abzielen, dieses Problem zu lösen.
Die Herausforderung abstrakter Objekte verstehen
Auf den ersten Blick scheinen abstrakte Objekte für die Frage nach der Souveränität Gottes irrelevant zu sein. Schließlich existieren diese Objekte – wie Zahlen oder logische Wahrheiten – unabhängig von irgendeiner physischen Form. Allerdings wirft ihre bloße Existenz eine wichtige Frage auf: Wenn diese Objekte unabhängig von Gott existieren, untergräbt das dann Gottes Anspruch, der Schöpfer von allem zu sein? Wenn diese abstrakten Objekte ungeschaffen und ewig sind, scheint es, dass etwas außerhalb des Willens Gottes existiert, was dem traditionellen Verständnis von Gott als dem autarken Wesen, das alles erschafft und erhält, widerspricht.
Diese Sorge ist nicht neu, wurde aber besonders dringlich für Theologen wie William Lane Craig, der dieser Herausforderung erstmals während einer philosophischen Konferenz begegnete. Das Konzept, dass abstrakte Objekte unabhängig und notwendigerweise – ähnlich wie Gott – existieren, stellte einen der überzeugendsten Einwände gegen die Souveränität Gottes dar, mit dem Craig jemals konfrontiert wurde. Tatsächlich hielt er diesen Einwand für einen wirkungsvolleren Einwand als traditionelle Herausforderungen wie das Problem des Bösen.
Platonischer Realismus und die Existenz abstrakter Objekte
Die Ansicht, dass abstrakte Objekte unabhängig voneinander existieren, wird als platonischer Realismus bezeichnet. Dieser Ansicht zufolge existieren abstrakte Objekte wie Zahlen, Eigenschaften und Mengen notwendigerweise und sind nicht von Gott abhängig. Sie sind zeitlos, raumlos und nicht-physisch. Dies stellt ein Problem für Theisten dar, die glauben, dass Gott das einzig notwendige Wesen ist. Wenn abstrakte Objekte notwendigerweise existieren, scheinen sie mit Gottes Selbstgenügsamkeit zu konkurrieren.
Das Unentbehrlichkeitsargument des Platonismus ist eine der prominentesten Verteidigungen dieser Position. Dieses Argument besagt, dass wir, da abstrakte Objekte für unsere besten wissenschaftlichen und mathematischen Theorien unverzichtbar sind, ontologisch an ihre Existenz gebunden sind. Wenn wir beispielsweise sagen: „2 + 2 = 4“, beziehen wir uns auf die Zahl 2 als ein existierendes abstraktes Objekt. Wenn diese Referenzen wahr sind, müssen abstrakte Objekte existieren.
Allerdings stimmen nicht alle Theologen oder Philosophen dieser Schlussfolgerung zu. Einige argumentieren, dass abstrakte Objekte von Gott geschaffen werden könnten. Andere behaupten, dass diese Objekte überhaupt nicht existieren und lediglich nützliche Fiktionen seien.
Absolute Schöpfung und das Bootstrapping-Problem
Eine vorgeschlagene Lösung für das Problem abstrakter Objekte ist als „absoluter Kreationismus“ bekannt. Diese Ansicht legt nahe, dass abstrakte Objekte nicht unabhängig von Gott sind, sondern von ihm geschaffen wurden. Auf diese Weise würde Gott die Souveränität behalten, da alle Dinge – ob abstrakt oder konkret – in ihrer Existenz von ihm abhängen würden.
Der absolute Kreationismus stößt jedoch auf ein erhebliches Problem, das oft als „Bootstrapping-Problem“ bezeichnet wird. Dies ergibt sich, wenn wir die Natur von Eigenschaften betrachten, die oft als abstrakte Objekte betrachtet werden. Damit Gott zum Beispiel die Eigenschaft schaffen kann, mächtig zu sein, muss Er bereits mächtig sein. Daher müsste Gott das Eigentum besitzen, bevor er es erschaffen kann, was zu einer Art Zirkularität führt.
Aufgrund dieses Bootstrapping-Problems wurde der absolute Kreationismus nicht allgemein als praktikable Lösung akzeptiert. Stattdessen haben sich Philosophen anderen Ansätzen wie dem Konzeptualismus und dem Antirealismus zugewandt, um die Souveränität Gottes mit der Existenz abstrakter Objekte in Einklang zu bringen.
Konzeptualismus: Abstrakte Objekte als göttliche Gedanken
Konzeptualismus ist die Ansicht, dass abstrakte Objekte keine unabhängigen Einheiten, sondern Gedanken im Geiste Gottes sind. Nach dieser Theorie existieren Zahlen, Eigenschaften und andere abstrakte Objekte, weil Gott sie erdacht hat. Dieser Ansatz passt gut zur traditionellen theistischen Ansicht, dass Gott die Quelle aller Realität ist.
Aus dieser Sicht werden abstrakte Objekte nicht im herkömmlichen Sinne geschaffen, sondern entstehen als Gedanken im Geist Gottes. Dadurch wird die Souveränität Gottes gewahrt, da diese Objekte vollständig von Gottes Intellekt abhängen. Somit bleibt Gott das einzige autarke Wesen, und abstrakte Objekte stellen keine Bedrohung für seine Autonomie dar.
Der Konzeptualismus war eine beliebte Lösung unter Theologen und Philosophen, darunter Alvin Plantinga. Es vermeidet das Bootstrapping-Problem und behauptet, dass Gott die Quelle aller Existenz ist. Es erfordert jedoch ein starkes Bekenntnis zu der Idee, dass Gedanken denselben ontologischen Status haben können wie physische oder unabhängige abstrakte Objekte.
Antirealismus und der fiktionalistische Ansatz
Eine andere Lösung für das Problem abstrakter Objekte ist der Antirealismus. Antirealisten argumentieren, dass abstrakte Objekte nicht unabhängig voneinander existieren. Stattdessen handelt es sich um nützliche Fiktionen oder bloße sprachliche Konventionen, die uns helfen, die Welt zu verstehen. Wenn wir beispielsweise über Zahlen oder mathematische Wahrheiten sprechen, betreiben wir eine Art „Vortäuschung“, die es uns ermöglicht, wissenschaftlich und mathematisch zu funktionieren, ohne uns auf die Existenz abstrakter Objekte festzulegen.
Innerhalb des Antirealismus bieten verschiedene Untertheorien unterschiedliche Erklärungen. Einer der bekanntesten ist der Fiktionalismus, der besagt, dass Aussagen über abstrakte Objekte falsch sind, aber nützlich sind, um uns zu helfen, die Welt zu verstehen. Fiktionalisten argumentieren, dass wir über Zahlen oder Mengen sprechen können, ohne zu glauben, dass es sich um reale Einheiten handelt, so wie wir über fiktive Charaktere wie Sherlock Holmes sprechen können, ohne zu glauben, dass sie existieren.
William Lane Craig hat nach Jahren des Studiums eine Form des Antirealismus angenommen, die er als „Neutralismus“ bezeichnet. Der Neutralismus besagt, dass Aussagen über abstrakte Objekte zwar wahr sein mögen, aber ontologisch neutral sind, was bedeutet, dass sie uns nicht auf die Existenz der Objekte verpflichten, auf die sie sich beziehen. Diese Sichtweise ermöglicht die Wahrheit mathematischer Aussagen ohne den metaphysischen Ballast, abstrakte Objekte in unsere Ontologie aufzunehmen.
Fazit: Gottes Souveränität mit abstrakten Objekten in Einklang bringen
Die Frage, ob abstrakte Objekte die Souveränität Gottes bedrohen, ist tiefgreifend. Während der platonische Realismus eine Herausforderung darstellt, bieten verschiedene philosophische Ansätze wie Konzeptualismus und Antirealismus Möglichkeiten, die absolute Souveränität Gottes aufrechtzuerhalten. Der Konzeptualismus behauptet die Existenz abstrakter Objekte als Gedanken im Geiste Gottes, während der Antirealismus die unabhängige Existenz dieser Objekte insgesamt leugnet.
Nach umfangreichen Recherchen hat William Lane Craig philosophischen Frieden mit dem Neutralismus gefunden, einer Form des Antirealismus, die ontologische Bindung an abstrakte Objekte vermeidet und gleichzeitig die Nützlichkeit von Aussagen über diese anerkennt. Dieser Ansatz geht davon aus, dass Gott das einzige autarke Wesen bleibt, und hält an der traditionellen Sichtweise der göttlichen Aseität fest.
Wenn Sie daran interessiert sind, tiefer in diese faszinierende Diskussion einzutauchen, empfehle ich Ihnen, sich das vollständige Gespräch anzusehen: hier< /a>.